1.引言
太阳能作为一种可再生的清洁能源,在能源环境领域越来越受到重视,太阳能发电已经成为太阳能大规模利用的主要方式。在未来的可再生能源利用中,太阳能热发电作为一种太阳能利用技术具有广阔的发展前景。
太阳能热发电的原理是先将太阳能转化为热能,再将热能转化为电能的发电技术,但由于太阳能的密度较低,温度通常情况下低于100℃,需要较大的采光集热面通过聚光改变光线传播方向,使光线聚焦以提高能量密度,才能满足发电要求。聚光器作为光热发电系统中将太阳能进行聚集以增加能量密度的装置,对聚光太阳能热发电的效率起着十分重要的作用,通过聚光器将低密度的太阳能聚焦后转换成高密度的太阳能,再经传热介质将太阳能转化为热能,然后通过热力循环做功实现由热能到电能的转换。由于太阳辐射不稳定,受昼夜、季节、地理位置和气候条件的影响波动较大,造成光热发电系统效率低而成本高。目前利用太阳能进行聚光热发电的形式主要有槽式、塔式、碟式、菲涅尔式等,几种发电方式并存并各自进行发展,但投入商业化运营的光热发电技术主要是塔式和槽式光热发电。理论上塔式效率可以达到23%,但由于单位容量投资大,商业化程度不及槽式太阳能发电[1],随着科学技术的不断进步和产品的日趋成熟,投资成本也会不断降低,会成为今后一段时期光热发电重点研发和利用形式。
2.一次聚光塔式光热发电及其缺点
目前塔式光热发电系统对于太阳光的聚集和反射多采用一次反射,即通过镜场将太阳辐射聚集到距离地面一定高度的吸热器上,吸热器直接接受地面镜场反射的太阳辐射,吸热器中的传热介质(熔融岩)获得高温热能,获取热量的传热介质通过管道将输送到热能地面储热罐,储热罐中的高温传热介质再通过管道输送到蒸汽发生器产生蒸汽推动汽轮机发电。这一系统中,镜场中的各定日镜对于中心吸热塔有着不同的朝向和距离,对每个定日镜的跟踪都要进行单独的二维控制,且各定日镜的控制各不相同,极大增加了控制系统的复杂性和安装调试的难度[1—3]。
采用该种方式布置的吸热器,由于距离地面的高度往往在100m以上,随着高度增加风速也是不断增大,在吸热器附近风速肯定大于地面,吸热器外表面对流热损较大,热量损失较大;吸热器高空布置,管道较长,热量从吸热器到地面进行管道输送,存在热量损失,热效率较低,同时需配置高扬程循环泵、建设吸热器基础及塔体,设备购置成本、建设成本增加,运行期场用电量也随之增加;吸热器施工安装和后期运维难度及安全风险较大,运行维护费用加大,电站建成后的运行期间的经济性相对降低。这些都成为制约一次反射塔式太阳能热发电大规模发展的因素。
由于吸热器是塔式光热发电系统的核心设备[5—8],在一次反射系统中吸热器位于100m以上的高空,建筑成本、运行维护成本较高,同时运行过程中也存在较高的安全风险,为了弥补这些不足,于是便出现了二次反射系统的设计。二次反射是在一次聚光系统的焦点处安装所需的光学元件,用以改变一次系统汇聚后光线的传播方向,将光线反射到地面吸热器。最主要的不同在于吸热器位于地面,塔架上布置二次反射装置,即通过在高空塔架上布置二次反射装置,将太阳光经定日镜反射到二次反射装置,再经二次反射装置聚焦位于地面的吸热器上[9—10]。这一系统中,光线传播距离较一次反射系统增加,但输热管道的距离却缩短,两个系统的能量传递方式不同,能量损失也有别。
塔式光热发电的光电转换效率决定于镜场年均光学效率、镜场年均运行效率、吸热器效率、储热器系统效率、管道效率、蒸汽换热效率、汽轮发电机组效率等因素,其中镜场光学效率由镜面效率、余弦损失、阴影和阻挡损失、大气衰减、截断因子等因素有关。二次反射系统相对于一次反射系统而言,镜场年均光学效率相对略微降低,吸热器效率及管道效率显著增加,其它因素变化不大,在此忽略。