与常规光伏电站一样,高倍聚光电站也是25年的质保,所以电站必须非常可靠。
一个名为“高倍聚光模组和装配-设计规格和定型”的标准(IEC62108)已经在2007年颁布实施,作为进入市场的强制性要求。今天,已经有许多公司根据这个标准通过了产品检验。同时,附加的UL和IEC标准(涵盖功率和能量标定、模组安全、跟踪器、光学、芯片装配等等)已经颁发或正在制定之中。
展望:关于系统成本和平准化电力成本
聚光系统的市场价格和成本信息很难取得。
这是由于市场比较小,活跃的公司并不多。这样,学习曲线并不是那么可靠,系统成本和平准化电力成本(LCOE或度电成本)的分析也具有很大的不确定性,除非市场上已经有了足够多的并网发电项目安装量。
2013年,Fraunhofer发表了一个可再生能源的平准化电力成本的深入研究。其中也包括了对高倍聚光的分析,根据的是基于公开发表的数据所作的假设。
加拿大的渥太华大学的一个小组也作过类似的报告。根据行业调查和文献,聚光光伏的价格(含安装),大多在1400欧元/千瓦和2200欧元/千瓦之间,根据不同的设计概念和新的地区差异而不同。
而根据技术经济性分析,我们计算得到聚光电站的平准化电力成本,则为0.1欧元/度~0.15欧元/度(DNI辐射度2000kWh/m2/a的地区),0.08欧元/度~0.12欧元/度(DNI辐射度2500kWh/m2/a的地区)。
对于聚光光伏,未来市场发展有很大的不确定性,技术进步带来成本的下降的可能性也是存在的。分析表明,未来度电成本下降的潜力将继续鼓励技术的发展。如果保持聚光光伏电站的安装,到2030年,聚光光伏将达到0.045欧元/度~0.075欧元/度,系统价格(含安装)将达到700欧元/千瓦~1100欧元/千瓦。
从图1可以看到,在一些日照比较好的地区,高倍聚光的成本已经和平板晶硅的成本可以比拟,或者更低。
展望:研发和技术
高光电转换效率是促使高倍聚光度电成本具有竞争力的最大因素。因而,绝大多数的研发努力都放在如何提高效率,无论是在芯片、模组还是在系统水平上。
图2显示了自2000年以来芯片、模组和系统效率的提升,强调了研发努力的进展。这些趋势线是来自欧洲研发平台的预期,这预计了聚光技术效率提升的巨大潜力。
效率问题:III-V族多结电池是聚光技术度电成本下降的主要推手。
从2002年以来,每年的效率提升在0.9%以上。Sharp公司和Fraunhofer实验室达到了今天的冠军效率,分别为三结电池44.4%和四结电池46.0%,46.5%的效率也已经出现,但还未得到权威检测机构的证实。
商业化产品的效率与实验室效率相当接近,说明高倍聚光技术的商业化转化非常迅速。根据一些公司的产品数据规格书,现在商业化聚光芯片的效率在38%~42%。
与其他光伏技术相比,聚光技术的高效率可以这样来解释。
首先,聚光芯片是元素周期表的III族和V族元素的化合物晶体制作,由不同的半导体材料按禁带宽度由低到高顺序堆砌而成的。这样做不仅是减少了光子吸收过程中的热损失,因不同能量的光子对应不同半导体带宽的材料吸收,更重要的是,跟单结结构相比,在透射损失减少的同时,光子吸收范围也大大增加。
同时,III-V族材料是直接带半导体,光子吸收效率很高,可以把材料做得非常薄。对比硅材料,硅是间接半导体材料,吸收光子的能力比较低,硅片通常要作的比较厚。
具体来说,广泛使用的III-V族聚光芯片结构,是晶格匹配的GaInP/InGaAs/Ge,这种材料不仅地面聚光光伏使用,在太空上也已经是成熟的应用了。这种器件是利用产出效率很高的气相外延生长设备(MOCVD)生产的,这种结构中的材料是跟Ge晶格匹配的,因此这种结构的材料晶体质量非常高,2009年其光电效率达到了41.6%(AM1.5d,364倍聚光比)。采用不同组分的III-V半导体材料提供了非常大的材料设计灵活性,具体的材料设计讨论超过了本报告的范围。另请注意,低倍聚光光伏仍然采用单晶硅材料,而本报告主要讨论高倍聚光的技术路径。
原材料供应问题:聚光芯片是采用了多种不同的元素,Ga(镓)、In(铟)和Ge(锗),在全球供应上是有限的。
镓和铟来自采矿副产品的还原,2013年的产量分别是280吨和770吨。2011年锗的产量约为118吨。这是原始产品的产量,不包含回收和重复利用。
假定锗衬底片的厚度为200微米,则理论使用量是0.1g/cm2,考虑30%的产出(锯割、切片、破裂等损失),则实际使用量是0.4g/cm2,取决于各公司如何控制锯割损失。只有少数公司能够回收利用锯割损失的锗废料,其他材料的损失比例则非常小。
这样,在假定30%模组效率和1000倍聚光比的条件下,1GW的高倍聚光所需要的Ge重量大约为4吨,不考虑回收的话最大不超过12吨。现在的材料供应是不存在问题的,随着效率提高和聚光比增加,材料用量还会减少。
在太阳能应用以外,Ge也广泛应用于电子、红外光学、光纤光学、聚酯催化剂等发展最快的应用需求。因此,未来锗的供应量还需要继续增加,如果聚光太阳能的应用能达到较大规模的话。全球已知锗的储量约有35600吨,其中24600吨来自煤,剩余的来自铅/锌生产。作为一种副产品,看不出来有任何限制锗产量的因素。
不过,不清楚的是,锗的价格是否需要提高以刺激产量。或者,作为副产品的锗价格是否变化,而其变化又如何才不至于影响聚光光伏的经济性。
对于镓和铟来说,聚光芯片生产所需要的量非常之少,即便是每年GW级的聚光光伏产能下,也不需要供应链增加供给。
另外,如果不采用锗衬底片,而是使用GaAs衬底片,Ga的用量会显著增加。假定600微米的GaAs片,Ga用量不到0.2g/cm2(没有考虑损耗),考虑30%产出并且不回收GaAs片,用量最高也不到0.5g/cm2。在有效回收,30%模组效率和1000倍聚光比条件下,每GW聚光光伏需要5.5吨Ga。
不考虑回收的情况下,最多也不超过17吨。在最坏情况下,以产能1GW/年计,聚光光伏的Ga用量,也只占了全球年供应量的6%。
如果聚光光伏的芯片在低倍聚光下使用,或者完全不采用聚光,则Ge、Ga、In的原材料供应问题将变得非常具有挑战性。也就是说,采用高倍聚光技术可以大大减少半导体材料的使用量。以1000倍聚光比为例,在相同功率下,相当于仅仅使用了千分之一的芯片用量,而转换效率还更高——聚光芯片在高倍聚光条件下,其光电转换效率比非聚光条件下的转换效率还要高8%左右。
>>编译后记
这是根据去年年底德国Fraunhofer实验室和美国可再生能源实验室共同就高倍聚光光伏技术的最新进展发表的一个报告编译而成的。最近几年,在全世界晶硅(多晶硅和单晶硅)大规模扩充产能和技术工艺进步导致平板晶硅太阳能系统成本和价格急剧下降的大背景下,聚光光伏(地面高倍聚光)在太阳能发电市场上的推广应用被迅速抑制,一系列的破产倒闭和重组事件,也给这个光伏细分行业蒙上了重重阴影。
不过,可喜的是,作为一种研发历史悠久并有着多年现场数据的发电项目经验,以及在太空上成熟应用的技术,高倍聚光以其技术和性能的优越性并没有完全被放弃,一些公司和研究机构在聚光芯片效率上每年都取得新进展,模组和系统的标准也已经制定或正在制定之中,大型聚光发电项目安装还在继续,不断在提供和累积现场数据,为这个行业带来希望的亮光。
中国在聚光光伏产业中,不仅能够商业化生产聚光芯片,在模组和系统上也积累了大量的实际生产经验,包括芯片的材料设计和商业化生产、接收器组装、光学部件、跟踪器等,已经形成了完整的聚光光伏产业链,且发电项目装机量在国际上也名列前茅。
从制造环节上看,聚光光伏的全产业链无污染和低能耗,聚光光伏系统的能源回报期只有6个月,是严格意义上的清洁能源。
从技术角度看,高倍聚光只在阳光充沛地区具有较强的价格竞争力。输出电力曲线平缓,比较适合大规模发电侧并网发电,在光伏发电的终端市场上应占有一席之地。也就是说,根据技术特点和应用情景,不同的光伏发电技术各有其优势的细分市场。
从积极的角度和发展的眼光来看,中国如支持发展聚光光伏,可以增强我国在先进半导体芯片技术方面的研发实力。而发展高端光学材料,提高光学设计水平,加强精密光学加工能力,符合国家从低端制造到高端智造的制造业转型趋势。发展大型聚光光伏发电,跟其他可再生能源一起,对中国的环境治理和碳排放控制也具有积极意义。